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ABSTRACT

We present Quip, a lossless compression algorithm
for next-generation sequencing data in the FASTQ
and SAM/BAM formats. In addition to implementing
reference-based compression, we have developed,
to our knowledge, the first assembly-based com-
pressor, using a novel de novo assembly algorithm.
A probabilistic data structure is used to dramatically
reduce the memory required by traditional de Bruijn
graph assemblers, allowing millions of reads to be
assembled very efficiently. Read sequences are
then stored as positions within the assembled
contigs. This is combined with statistical compres-
sion of read identifiers, quality scores, alignment in-
formation and sequences, effectively collapsing
very large data sets to <15% of their original size
with no loss of information. Availability: Quip is freely
available under the 3-clause BSD license from http://
cs.washington.edu/homes/dcjones/quip.

INTRODUCTION

With the development of next-generation sequencing
(NGS) technology, researchers have had to adapt
quickly to cope with the vast increase in raw data.
Experiments that would previously have been conducted
with microarrays and resulted in several megabytes of
data, are now performed by sequencing, producing
many gigabytes, and demanding a significant investment
in computational infrastructure. While the cost of disk
storage has also steadily decreased over time, it has not
matched the dramatic change in the cost and volume of
sequencing. A transformative breakthrough in storage
technology may occur in the coming years, but the era
of the $1000 genome is certain to arrive before that of
the $100 petabyte hard disk.

As cloud computing and software as a service become
increasingly relevant to molecular biology research, hours
spent transferring NGS data sets to and from off-site
servers for analysis will delay meaningful results. More
often researchers will be forced to maximize bandwidth
by physically transporting storage media (via the
‘sneakernet’), an expensive and logistically complicated
option. These difficulties will only be amplified as expo-
nentially more sequencing data are generated, implying
that even moderate gains in domain-specific compression
methods will translate into a significant reduction in the
cost of managing these massive data sets over time.
Storage and analysis of NGS data centers primarily

around two formats that have arisen recently as de facto
standards: FASTQ and SAM. FASTQ stores, in addition
to nucleotide sequences, a unique identifier for each read
and quality scores, which encode estimates of the prob-
ability that each base is correctly called. For its simplicity,
FASTQ is a surprisingly ill-defined format. The closest
thing to an accepted specification is the description by
Cock et al. (1), but the format arose ad hoc from
multiple sources (primarily Sanger and Solexa/Illumina),
so a number of variations exist, particularly in how quality
scores are encoded. The SAM format is far more complex
but also more tightly defined, and comes with a reference
implementation in the form of SAMtools (2). It is able to
store alignment information in addition to read identifiers,
sequences and quality scores. SAM files, which are stored
in plain text, can also be converted to the BAM format, a
compressed binary version of SAM, which is far more
compact and allows for relatively efficient random access.
Compression of nucleotide sequences has been the

target of some interest, but compressing NGS data,
made up of millions of short fragments of a greater
whole, combined with metadata in the form of read iden-
tifiers and quality scores, presents a very different problem
and demands new techniques. Splitting the data into
separate contexts for read identifiers, sequences and
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quality scores, and compressing them with the Lempel-Zip
algorithm and Huffman coding has been explored by
Tembe et al. (3) and Deorowicz and Grabowski (4), who
demonstrate the promise of domain-specific compression
with significant gains over general-purpose programs like
gzip and bzip2.
Kozanitis et al. (5) and Hsi-Yang Fritz et al. (6)

proposed reference-based compression methods, exploit-
ing the redundant nature of the data by aligning reads
to a known reference genome sequence and storing
genomic positions in place of nucleotide sequences.
Decompression is then performed by copying the read se-
quences from the genome. Though any differences from
the reference sequence must also be stored, referenced-
based approaches can achieve much higher compression
and they grow increasing efficient with longer read
lengths, since storing a genomic position requires the
same amount of space, regardless of the length of the read.
This idea is explored also in the Goby format (http://

campagnelab.org/software/goby/), which has been
proposed as an alternative to SAM/BAM, the primary
functional difference being that sequences of aligned
reads are not stored but looked up in a reference genome
when needed (frequently they are not). For some applica-
tions, reference-based compression can be taken much
further by storing only single nucleotide polymorphism
(SNP) information, summarizing a sequencing experiment
in several megabytes (7). However, even when SNP calls
are all that is needed, discarding the raw reads would
prevent any reanalysis of the data.
While a reference-based approach typically results in

superior compression, it has a number of disadvantages.
Most evidently, an appropriate reference sequence
database is not always available, particularly in the case
of metagenomic sequencing. One could be contrived by
compiling a set of genomes from species expected to be
represented in the sample. However, a high degree of ex-
pertise is required to curate and manage such a
project-dependent database. Secondly, there is the prac-
tical concern that files compressed with a reference-based
approach are not self-contained. Decompression requires
precisely the same reference database used for compres-
sion, and if it is lost or forgotten, the compressed data
becomes inaccessible.
Another recurring theme in the the growing literature

on short read compression is lossy encoding of sequence
quality scores. This follows naturally from the realization
that quality scores are particularly difficult to compress.
Unlike read identifiers, which are highly redundant, or
nucleotide sequences, which contain some structure,
quality scores are inconsistently encoded between proto-
cols and computational pipelines and are often simply
high-entropy. It is dissatisfying that metadata (quality
scores) should consume more space than primary data
(nucleotide sequences). Yet, also dissatisfying to many re-
searchers is the thought of discarding information without
a very good understanding of its effect on downstream
analysis.
A number of lossy compression algorithms for quality

scores have been proposed, including various binning
schemes implemented in QScores-Archiver (8) and

SCALCE (http://scalce.sourceforge.net), scaling to a
reduced alphabet with randomized rounding in
SlimGene (5), and discarding quality scores for bases
which match a reference sequence in Cramtools (6). In
SCALCE, SlimGene and Cramtools, quality scores may
also be losslessly compressed. Kozanitis et al. (5) analyzed
the effects of their algorithm on downstream analysis.
Their results suggest that while some SNP calls are
affected, they are primarily marginal, low-confidence
calls between hetero- and homozygosity.

Decreasing the entropy of quality scores while retaining
accuracy is an important goal, but successful lossy com-
pression demands an understanding of what is lost. For
example, lossy audio compression (e.g. MP3) is grounded
in psychoacoustic principles, preferentially discarding the
least perceptible sound. Conjuring a similarly principled
method for NGS quality scores is difficult given that both
the algorithms that generate them and the algorithms that
are informed by them are moving targets. In the analysis
by Kozanitis et al. (5), the authors are appropriately
cautious in interpreting their results, pointing out that
‘there are dozens of downstream applications and much
work needs to be done to ensure that coarsely quantized
quality values will be acceptable for users.’

In the following sections, we describe and evaluate
Quip, a new lossless compression algorithm which lever-
ages a variety of techniques to achieve very high compres-
sion over sequencing data of many types, yet remains
efficient and practical. We have implement this approach
in an open-source tool that is capable of compressing both
BAM/SAM and FASTQ files, retaining all information
from the original file.

MATERIALS AND METHODS

Statistical compression

The basis of our approach is founded on statistical com-
pression using arithmetic coding, a form of entropy coding
which approaches optimality, but requires some care to
implement efficiently [see Said (9) for an excellent
review]. Arithmetic coding can be thought of as a refine-
ment of Huffman coding, the major advantage being that
it is able to assign codes of a non-integral number of bits.
If a symbol appears with probability 0.1, it can be encoded
near to its optimal code length of �log2(0.1)& 3.3 bits.
Despite its power, it has historically seen much less use
than Huffman coding, due in large part to fear of
infringing on a number of patents that have now expired.

Arithmetic coding is a particularly elegant means of
compression in that it allows a complete separation
between statistical modeling and encoding. In Quip, the
same arithmetic coder is used to encode quality scores,
read identifiers, nucleotide sequences and alignment infor-
mation, but with very different statistical models for each,
which gives it a tremendous advantage over general-
purpose compression algorithms that lump everything
into a single context. Furthermore, all parts of our algo-
rithm use adaptive modeling: parameters are trained and
updated as data are compressed, so that an increasingly
tight fit and higher compression is achieved on large files.
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Read identifiers
The only requirement of read identifiers is that they
uniquely identify the read. A single integer would do,
but typically each read comes with a complex string con-
taining the instrument name, run identifier, flow cell iden-
tifier and tile coordinates. Much of this information is the
same for every read and is simply repeated, inflating the
file size.

To remove this redundancy, we use a form of delta
encoding. A parser tokenizes the ID into separate fields
which are then compared with the previous ID. Tokens
that remain the same from read to read (e.g. instrument
name) can be compressed to a negligible amount of
space—arithmetic coding produces codes of less than 1
bit in such cases. Numerical tokens are recognized and
stored efficiently, either directly or as an offset from the
token in the same position in previous read. Otherwise,
non-identical tokens are encoded by matching as much of
the prefix as possible to the previous read’s token before
directly encoding the non-matching suffix.

The end result is that read IDs, which are often 50 bytes
or longer, are typically stored in 2–4 bytes. Notably, in
reads produced from Illumina instruments, most parts of
the ID can be compressed to consume almost no space; the
remaining few bytes are accounted for by tile coordinates.
These coordinates are almost never needed in downstream
analysis, so removing them as a preprocessing step would
shrink file sizes even further. The parser used is suitably
general so that no change to the compression algorithm
would be needed.

Nucleotide sequences
To compress nucleotide sequences, we adopt a very simple
model based on high-order Markov chains. The nucleo-
tide at a given position in a read is predicted using the
preceding 12 positions. This model uses more memory
than traditional general-purpose compression algorithms
(413=67 108 864 parameters are needed, each represented
in 32 bits) but it is simple and extremely efficient (very
little computation is required and run time is limited pri-
marily by memory latency, as lookups in such a large table
result in frequent cache misses).

An order-12 Markov chain also requires a very large
amount of data to train, but there is no shortage with
the data sets we wish to compress. Though less adept at
compressing extremely short files, after compressing
several million reads, the parameters are tightly fit to the
nucleotide composition of the data set so that the remain-
ing reads will be highly compressed. Compressing larger
files only results in a tighter fit and higher compression.

Quality scores
It has been previously noted that the quality score at a
given position is highly correlated with the score at the
preceding position (5). This makes a Markov chain a
natural model, but unlike nucleotides, quality scores are
over a much larger alphabet (typically 41–46 distinct
scores). This limits the order of the Markov chain: long
chains will require a great deal of space and take a unreal-
istic amount of data to train.

To reduce the number of parameters, we use an order-3
Markov chain, but coarsely bin the distal two positions. In
addition to the preceding three positions, we condition on
the position within the read and a running count of the
number large jumps in quality scores between adjacent
positions (where a ‘large jump’ is defined as jqi� qi�1j> 1),
which allows reads with highly variable quality scores to
be encoded using separate models. Both of these variables
are binned to control the number of parameters.

Reference-based compression

We have also implemented lossless reference-based com-
pression. Given aligned reads in SAM or BAM format,
and the reference sequence to which they are aligned (in
FASTA format), the reads are compressed preserving all
information in the SAM/BAM file, including the header,
read IDs, alignment information and all optional fields
allowed by the SAM format. Unaligned reads are
retained and compressed using the Markov chain model.

Assembly-based compression

To complement the reference-based approach, we de-
veloped an assembly-based approach which offers some
of the advantages of reference-based compression, but
requires no external sequence database and produces
files which are entirely self-contained. We use the first
(by default) 2.5 million reads to assemble contigs which
are then used in place of a reference sequence database to
encode aligned reads compactly as positions.
Once contigs are assembled, read sequences are aligned

using a simple ‘seed and extend’ method: 12-mer seeds are
matched using a hash table, and candidate alignments are
evaluated using Hamming distance. The best (lowest
Hamming distance) alignment is chosen, assuming it
falls below a given cutoff, and the read is encoded as a
position within the contig set. This alignment method is
simple and exceedingly fast, but it is most effective on
platforms in which erroneous indels occur infrequently
(e.g. Illumina).
Roughly, assembly-based compression can be thought

of as a variation on the Lempel-Ziv algorithm: as se-
quences are read, they are matched to previously
observed data, or in this case, contigs assembled from pre-
viously observed data. These contigs are not explicitly
stored, but rather reassembled during decompression.
Traditionally, de novo assembly is extremely computa-

tionally intensive. The most commonly used technique
involves constructing a de Bruijn graph, a directed graph
in which each vertex represents a nucleotide k-mer present
in the data for some fixed k (e.g. k=25 is a common
choice). A directed edge from a k-mer u to v occurs if
and only if the (k� 1)-mer suffix of u is also the prefix
of v. In principle, given such a graph, an assembly can
be produced by finding an Eulerian path, i.e. a path that
follows each edge in the graph exactly once (10). In
practice, since NGS data have a non-negligible error
rate, assemblers augment each vertex with the number of
observed occurrences of the k-mer and leverage these
counts using a variety of heuristics to filter out spurious
paths.
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A significant bottleneck of the de Bruijn graph
approach is building an implicit representation of the
graph by counting and storing k-mer occurrences in a
hash table. The assembler implemented in Quip overcomes
this bottleneck to a large extent by using a data structure
based on the Bloom filter to count k-mers. The Bloom
filter (11) is a probabilistic data structure that represents
a set of elements extremely compactly, at the cost of
elements occasionally colliding and incorrectly being
reported as present in the set. It is probabilistic in the
sense that these collisions occur pseudo-randomly,
determined by the size of the table and the hash functions
chosen, but generally with low probability.
The Bloom filter is generalized in the counting Bloom

filter, in which an arbitrary count can be associated with
each element (12). A very similar data structure, the
CountMin Sketch, is described by Cormode and
Muthukrishnan (13), which was arrived at independently
of the prior Bloom filter research. Bonomi et al. (14) sub-
sequently described the d-left counting Bloom filter
(dlCBF), a refinement of the counting Bloom filter
requiring significantly less space to achieve the same
false positive rate.
We base our assembler on a realization of the dlCBF.

Since we use a probabilistic data structure, k-mers are
occasionally reported to have incorrect (inflated) counts.
The assembly can be made less accurate by these incorrect
counts, however a poor assembly only results in slightly
increasing the compression ratio. Compression remains
lossless regardless of the assembly quality, and in
practice collisions in the dlCBF occur at a very low rate
(this is explored in the ‘Results’ section).
Given a probabilistic de Bruijn graph, we assemble

contigs using a very simple greedy approach. A read
sequence is used as a seed and extended on both ends
one nucleotide at a time by repeatedly finding the most
abundant k-mer that overlaps the end of the contig by
k� 1 bases. More sophisticated heuristics have been de-
veloped, but we choose to focus on efficiency, sacrificing a
degree of accuracy.
Memory efficient assembly has been a goal of particular

interest and is a topic of ongoing research. Conway and
Bromage (15) have developed a more efficient means of
representing de Bruijn graphs using sparse bitmaps com-
pressed with Elias–Fano encoding. The String Graph
Assembler described by Simpson and Durbin (16) takes
an entirely different approach, relying on the FM-index
(17) to build a compact representation of the set of short
reads from which contigs are generated by searching for
overlaps. Both of these algorithms sacrifice time-efficiency
for their promising increases in space-efficiency, reporting
significantly longer run times than traditional assemblers
[e.g. both with compared with ABySS (18)].
Our work is a significant departure in that we abandon

exact representations and rely on a probabilistic data
structure, an idea that has only very recently been
breached. Counting k-mers efficiently with the help of
Bloom filters was previously explored by Melsted and
Pritchard (19), who use it in addition, rather than in
place, of a hash table. The Bloom filter is used as a

‘staging area’ to store k-mers occurring only once,
reducing the memory required by the hash table.

Concurrently with our work, Pell et al. (20) explore the
use of probabilistic data structures in assembly, imple-
menting a probabilistic de Bruijn graph based on the
Bloom filter. While we go somewhat further, developing
a full assembler using the more versatile dlCBF data struc-
ture, we have limited our discussion to data compression.
Pell et al. (20) on the other hand provide a compelling
justification for the practicality of probabilistic de Bruijn
graphs in the assembly problem, showing that the
false-positive rate of the data structure is dwarfed by
base-calling error in the data itself.

Metadata

In designing the file format used by Quip, we included
several useful features to protect data integrity. First,
output is divided into blocks of several megabytes each.
In each block a separate 64-bit checksum is computed for
read identifiers, nucleotide sequences and quality scores.
When the archive is decompressed, these checksums are
recomputed on the decompressed data and compared with
the stored checksums, verifying the correctness of the
output. The integrity of an archived data set can also be
checked with the ‘quip-test’ command.

Apart from data corruption, reference-based compres-
sion creates the possibility of data loss if the reference used
for compression is lost, or an incorrect reference is used.
To protect against this, Quip files store a 64-bit hash of the
reference sequence, ensuring that the same sequence is
used for decompression. To assist in locating the correct
reference, the file name, and the lengths and names of the
sequences used in compression are also stored and access-
ible without decompression.

Additionally, block headers store the number of reads
and bases compressed in the block, allowing summary
statistics of a data set to be listed without decompression
using the ‘quip-list’ command.

RESULTS

Compression of sequencing data

We compared Quip with three commonplace general-
purpose compression algorithms: gzip, bzip2 and xz, as
well as more recently developed domain-specific compres-
sion algorithms: DSRC (4) and Cramtools (6). Other
methods have been proposed (3,5,21), but without
publicly available software we were unable independently
evaluate them. We have also restricted our focus to
lossless compression, and have not evaluated a number
of promising lossy methods (6,8), nor methods only
capable of compressing nucleotide sequences (22). We
invoked Quip in three ways: using only statistical com-
pression (‘quip’), using reference-based compression
(‘quip -r’), and finally with assembly-based compression
(‘quip -a’). Table 1 gives an overview of the methods
evaluated.

We acquired six data sets (Table 2) from the Sequence
Read Archive (23), representing a broad sampling of
recent applications of NGS. Genome and exome
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sequencing data were taken from 1000 Genomes Project
(24), total and mRNA data from the Illumina BodyMap
2.0 data set (25), Runx2 ChIP-Seq performed in a prostate
cancer cell line (26) and metagenomic DNA sequencing of
biofilm found in the extremely acidic drainage from the
Richmond Mine in California (27).

The Sequence Read Archive provides data in its own
SRA compression format which we also evaluate here.
Programs for working with SRA files are provided in
the SRA Toolkit, but a convenient means of converting
from FASTQ to SRA is not, so we have not measured
compression time and memory in this case.

In the case of reference-based compression implemented
in Cramtools and Quip, we aligned reads from all but the
metagenomic data to the GRCh37/hg19 assembly of the
human genome using GSNAP (28) generating a BAM file.
Splice-junction prediction was enabled for the two
RNA-Seq data sets. In the case of multiple alignments,
we removed all but the the primary (i.e. highest scoring).
Quip is able to store secondary alignments, but the version
of Cramtools we evaluated was not. When the purpose of
alignment in simply compactly archiving the reads, sec-
ondary alignments have no purpose and merely inflate
the file size, but in downstream analysis they are often
extremely informative and retaining them may be desir-
able in some cases.

It is important to note pure lossless compression is not
the intended goal of Cramtools. Though we invoked
Cramtools with options to include all quality scores
(––capture–all–quality–scores), optional tags
(––capture–all–tags) and retain unaligned reads
(––include–unmapped–reads), it is unable to store
the original read IDs. Since all other programs evaluated
were entirely lossless, measuring compressed file sizes is

not an entirely fair comparison. Cramtools is put at some
advantage simply by excluding identifiers. However, as
the only other available reference-based compression
method, it is a useful comparison.
With each method, we compressed then decompressed

each data set on a server with a 2.8Ghz Intel Xeon pro-
cessor and 64GB of memory. In addition to recording the
compressed file size (Figure 1), we measured wall clock
run-time (Figure 3) and maximum memory usage
(Table 3) using the Unix time command. Run time was
normalized to the size of the original FASTQ file,
measuring throughput in megabytes per second.
For the reference-based compressors, time spent aligning

reads to the genome was not included, though it required
up to several hours. Furthermore, while Quip is able to
compress aligned reads in an uncompressed SAM file and
then decompress back to SAM (or FASTQ), the input and
output of Cramtools is necessarily a BAM file, and so we
also use BAM files as input and output in our benchmarks
of ‘quip-r’. This conflates measurements of compression
and decompression time: since BAM files are compressed
with zlib, compression times for the reference-based
compressors include time needed to decompress the BAM
file, and decompression times include re-compressing the
output to BAM. Consequently, decompression speeds in
particular for both Cramtools and reference-based Quip
(‘quip-r’) appear significantly lower than they otherwise
might.
In the single-genome samples, we find that

reference-based compression using Quip consistently
results in the smallest file size (i.e. highest compression),
yet even without a reference sequence, compression is
quite high, even matching the reference-based approach
used by Cramtools in two of the data sets.

Table 1. Methods evaluated in the ‘Results’ section

Program Input Methods

gzip (1.4) Any Lempel–Ziv
bzip2 (1.0.6) Any Burrows–Wheeler and Huffman coding
xz (5.0.3) Any Lempel–Ziv with arithmetic coding
sra (2.1.10) FASTQ No published description
dsrc (0.3) FASTQ Lempel–Ziv and Huffman coding.
cramtools (0.85-b51) BAM Reference-based compression
quip (1.1.0) FASTQ, SAM, BAM Statistical modeling with arithmetic coding
quip -a (1.1.0) FASTQ, SAM, BAM Quip with assembly-based compression
quip -r (1.1.0) SAM, BAM Quip with reference-reference based compression

All methods compared are lossless, with the exception of Cramtools which does not preserve the original read identifiers.

Table 2. We evaluated compression on a single lane of sequencing data taken from a broad collection of seven studies

Accession number Description Source Read length Size (GB)

SRR400039 Whole genome The 1000 Genomes Project (24) 101 67.6
SRR125858 Exome The 1000 Genomes Project (24) 76 55.2
SRR372816 Runx2 ChIP-Seq Little et al. (26) 50 14.6
ERR030867 Total RNA The BodyMap 2.0 Project, Asmann et al. (25) 100 19.5
ERR030894 mRNA The BodyMap 2.0 Project, Asmann et al. (25) 75 16.4
SRR359032 Metagenomic DNA Denef et al. (27) 100 8.9

Except for the metagenomic data, each was generated from human samples. Uncompressed file sizes are shown in gigabytes.
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Assembly-based compression provides almost no advan-
tage in the single-genome ChIP-Seq, Whole Genome and
Exome data sets. Since we assembly only several million
reads (2.5 million, by default), coverage is only enough to
assemble representatives of certain families of repeats in
these data sets.
In the RNA-Seq data sets, more is assembled (�35 and

70% of the reads are aligned to assembled contigs in the
total RNA-Seq and mRNA-Seq data sets, respectively),
but this only provides a small increase in the compression
overall. Mostly probably, the aligned reads in these data
sets are relatively low-entropy, composed largely of
protein-coding sequence, and would be encoded only
moderately less compactly with the Markov chain
method.
Nevertheless, assembly-based compression does provide

a significant advantage in the metagenomic data set.
Nearly 95% of reads align to assembled contigs, resulting
in a large reduction in compressed file size. Metagenomic
sequencing is performed on such a wide variety of
samples, that these results can not be easily generalized
to all metagenomic data sets. Since success in assembly
relies on high coverage, a significant role is played by
species diversity, which can vary widely. Yet these
results do show that assembly-based compression is

beneficial in certain cases. Though it comes at some cost,
we are able to perform assembly with exceedingly high
efficiently: memory usage is increased only by 400MB
and compression time is faster than all but DSRC and
assembly-free Quip even while assembling 2.5 million
reads and aligning millions more reads to the assembled
contigs.

With all invocations of Quip, the size of the resulting file
is dominated, sometimes overwhelmingly, by quality
scores (Figure 2). There is not a direct way to measure
this using the other methods evaluated, but this result
suggests that increased compression of nucleotide se-
quences will result in diminishing returns.

Characteristics of the dlCBF

Though our primary goal is efficient compression of
sequencing data, the assembly algorithm we developed
to achieve this is of independent interest. Only very
recently has the idea of using probabilistic data structures
in assembly been breached, and to our knowledge, we are
the first to build a functioning assembler using any version
of the counting Bloom filter. Data structures based on the
Bloom filter make a trade-off between space and the prob-
ability of inserted elements colliding. Tables can be made
arbitrarily small at the cost of increasing the number of
collisions. To elucidate this trade-off, we performed a
simple simulation comparing the dlCBF to a hash table.

Comparisons of data structures are notoriously sensi-
tive to the specifics of the implementation. To perform a
meaningful benchmark, we compared our dlCBF imple-
mentation with the sparsehash library (http://code.google
.com/p/sparsehash/), an open-source hash table imple-
mentation with the expressed goal of maximizing space
efficiency. Among many other uses, it is the core data
structure in the ABySS (18) and PASHA (29) assemblers.

We randomly generated 10 million unique, uniformly
distributed 25-mers and inserted them into a hash table,
allocated in advance to be of minimal size while avoiding
resizing and rehashing. We repeated this with dlCBF
tables of increasing sizes. Upon insertion, a collision
occurs when the hash functions computed on the
inserted k-mer collide with a previously inserted k-mer.
An insertion may also fail when a fixed size table is
filled to capacity and no empty cells are available.

Figure 1. One lane of sequencing data from each of six publicly available data sets (Table 2) was compressed using a variety of methods (Table 1).
The size of the compressed data is plotted in proportion to the size of uncompressed data. Note that all methods evaluated are entirely lossless with
the exception of Cramtools, marked in this plot with an asterisk, which does not preserve read IDs, giving it some advantage in these comparisons.
Reference-based compression methods, in which an external sequence database is used, were not applied to the metagenomic data set for lack of an
obvious reference. These plots are marked ‘N/A’.

Table 3. Maximum memory usage was recorded for each program

and data set

Method Average memory usage (MB)

Compression Decompression

gzip 0.8 0.7
bzip2 7.0 4.0
xz 96.2 9.0
sra NA 46.9
dsrc 28.3 15.1
cramtools 6803.8 6749.3
quip 412.1 412.9
quip -a 823.0 794.1
quip -r 1710.0 1717.2

We list the average across data sets of these measurements. For most of
the programs, memory usage varied by <10% across data sets and well
summarized by the mean, with the exception of SRA. Decompression
used <60MB except in the human exome sequencing data set, in which
>1.4GB was used. We report the mean with this outlier removed.
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For simplicity, we count these occurrences also as colli-
sions. Wall clock run-time and maximum memory usage
were both recorded using the Unix time command.

We find that with only 20% of the space of the hash
table, the dlCBF accrues a collision rate of less than 0.001
(Figure 4). While the hash table performed the 10 million
insertions in 7.34 s, it required only 4.48 s on average for
the dlCBF to do the same, with both simulations run on a
2.8Ghz Intel Xeon processor. Table size did not greatly
affect the run time of the dlCBF. The assembler imple-
mented in Quip uses a fixed table size, conservatively set to
allow for 100 million unique k-mers with a collision rate of
�0.08% in simulations.

Though the authors of sparsehash claim only a 4-bit
overhead for each entry, and have gone to considerably
effort to achieve such efficiency, it still must store the
k-mer itself, encoded in 64 bits. The dlCBF avoids this,
storing instead a 14-bit ‘fingerprint’, or hash of a k-mer,
resulting in the large savings we observe. Of course, a
25-mer cannot be uniquely identified with 14 bits. False
positives are thus introduced, yet they are kept at a very
low rate by the d-left hashing scheme. Multiple hash
functions are used under this scheme, so that multiple
hash function must collide to result in a collision, an in-
frequent event if reasonably high-quality hash functions
are chosen.

A previous analysis of the dlCBF by Zhang et al. (30)
compared it with two other variations of the counting
Bloom filter and concluded that ‘the dlCBF outperforms
the others remarkably, in terms of both space efficiency
and accuracy.’ Overall, this data structure appears par-
ticularly adept for high efficiency de novo assembly.

DISCUSSION

Compared with the only other published and freely-
available reference-based compressor, Cramtools, we see
a significant reduction in compressed file size, despite read
identifiers being discarded by Cramtools and retained by
Quip. This is combined with dramatically reduced
memory usage, comparable run-time (slightly faster com-
pression paired with varying relative decompression
speeds), and increased flexibility (e.g. Quip is able to
store multiple alignments of the same read and does not
require that the BAM file be sorted or indexed).

Figure 2. After compressing with Quip using the base algorithm (labeled ‘quip’), assembly-based compression (‘quip -a’) and reference-based com-
pression (‘quip -r’), we measure the size of read identifiers, nucleotide sequences and quality scores in proportion to the total compressed file size.
Reference-based compression (‘quip -r’) was not applied to the metagenomic data.

Figure 3. The wall clock run-time of each evaluation was recorded using the Unix time command. Run-time is normalized by the size of the original
FASTQ file to obtain a measure of compression and decompression throughput, plotted here in megabytes per second. Compression speed is plotted
to the left of the zero axis, and decompression speed to the right. There is a not a convenient means of converting from FASTQ to SRA, so
compression time is not measured for SRA. Additionally, reference-based methods are not applied to the metagenomic data. In the case of
reference-based compression implemented in ‘cramtools’ and ‘quip -r’, input and output is in the BAM format, so the speeds plotted here
include time needed to decompress and compress the BAM input and output, respectively.

Figure 4. The trade-off between memory usage and false positive rate
in the dlCBF is evaluated by inserting 10 million unique 25-mers into
tables of increasing size. Memory usage is reported as the proportion of
the memory used by a memory efficient hash table to do the same.
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Conversely, Cramtools implements some potentially very
useful lossy methods not provided by Quip. For example,
a number of options are available for selectively discard-
ing quality scores that are deemed unnecessary, which can
significantly reduce compressed file sizes.
We find that assembly-based compression offers only a

small advantage in many data sets. Since we assemble a
relatively small subset of the data, coverage is too low
when sequencing a large portion of a eukaryotic
genome. In principle, the assembler used could be scaled
to handle exponentially more reads, but at the cost of
being increasingly computationally intensive. In such
cases, the reference-based approach may be more appro-
priate. Yet, in the metagenomic data set we evaluate,
where there is no obvious reference sequence, nucleotide
sequences are reduced in size by over 40% (Figure 2).
While limited in scope, for certain projects assembly-based
compression can prove to be invaluable, and the algorithm
devised here makes it a tractable option.
The Lempel-Ziv algorithm, particularly as implemented

in gzip/libz has become a reasonable default choice for
compression. The zlib library has matured and stabilized
over the course of two decades and is widely available.
The BAM and Goby formats both use zlib for compres-
sion, and compressing FASTQ files with gzip is still
common practice. Despite its ubiquity, our benchmarks
show that it is remarkably poorly suited to NGS data.
Both compression ratio and compression time were
inferior to the other programs evaluated. For most
purposes, the gains in decompression time do not make
up for its shortcomings. With the more sophisticated vari-
ation implemented in xz, compression is improved but at
the cost of tremendously slow compression.
Our use of high-order Markov chain models and

de novo assembly results in a program that uses signifi-
cantly more memory than the others tested, with the ex-
ception of Cramtools. Though limiting the memory used
by a general purpose compression program enables it to be
used on a wider variety of systems, this is less important in
this domain-specific application. Common analysis of
NGS data, whether it be alignment, assembly, isoform
quantification, peak calling or SNP calling, all require sig-
nificant computational resources. Targeting low-memory
systems would not be of particular benefit: NGS precludes
previous-generation hardware.
Though memory consumption is not a top priority, run

time is important. Newer instruments like the HiSeq 2000
produce far more data per lane than previously possible.
And, as the cost of sequencing continues to decrease, ex-
periments will involve more conditions, replicates and
timepoints. Quip is able to compress NGS data at three
times the speed of gzip, while performing de novo assembly
of millions of reads, and up to five times as fast without
the assembly step. Only DSRC is faster, but with consist-
ently lower compression. In addition, our reference-based
compression algorithm matches the speed of Cramtools
but with substantially better lossless compression.
As illustrated in Figure 2, the size of compressed NGS

data is dominated by quality scores. More sophisticated
compression of nucleotide sequences may be possible but
will result in only minor reductions to the overall file size.

The largest benefit would be seen by reducing quality
scores. While it is easy to reduce the size of quality data
by coarse binning or other lossy methods, it is very hard to
determine the effect such transformations will have on
downstream analysis. Future work should concentrate
on studying lossy quality score compression, strictly
guided by minimizing loss of accuracy in alignment,
SNP calling and other applications. Quality scores are
encoded in Quip using an algorithm that is suitably
general so that lossy transformations (e.g. binning) can
be automatically exploited, and can be treated as an
optional preprocessing step.

Other aspects of the algorithm presented here can be
improved, and will be with future versions of the
software. A large body of work exists exploring heuristics
to improve the the quality of de novo assembly, however
the algorithm in Quip uses a very simple greedy approach.
Assembly could likely be improved without greatly
reducing efficiency by exploring more sophisticated
methods. We currently perform no special handling of
paired-end reads, so that mates are compressed independ-
ently of each other. In principle, some gains to compres-
sion could be made by exploiting pair information. We
also intend to implement parallel compression and decom-
pression. This is non-trivial, but quite possible and worth-
while given the abundance of data and ubiquity of
multi-core processors.

Combining reference-based and assembly-based tech-
niques, with carefully tuned statistical compression, the
algorithm presented in Quip probes the limit to which
NGS data can be compressed losslessly, yet remains effi-
cient enough be a practical tool when coping with the
deluge of data that biology research is now presented with.
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